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LETTER TO THE EDITOR 

Analysis of a sum of modified remnant functions 

Guy Spronken 
Ddpartement de gdnie physique, Ecole Polytechnique, Montrdal, Qudbec H3C 3A7, Canada 

Received 10 March 1986 

Abstract. The analysis of a sum of modified remnant functions, Pg,,(z)= 
f { R & ( z ) +  R;,:(z)}, where T = O ,  v is half-odd integer, 0s a <  1 and z complex, is 
presented. An analytical expression for z # 0 and larg zI < w is obtained as well as a power 
expansion valid for all z. The behaviour of P & ( z )  as Izl+ 00 and z + 0 is also obtained. 

The remnant functions, Rm,T(z) ,  have been introduced and analysed in detail for 
arbitrary real U and T and for complex z by Fisher and Barber (1972). These functions 
arise, for example, in the analysis of the spherical constraint in the critical region of 
the &dimensional spherical model (Barber and Fisher 1973). The remnant functions 
entering in this analysis arise as part of the scaling functions. They are of the form 
R1,2(d-1),0( z) with d 2 3. The remnant function R3/2,0( z )  also arises in the calculation 
of the scaling function of the two-dimensional Ising model in the extreme anisotropic 
quantum Hamiltonian limit (Hamer and Barber 1981). In these examples the quantity 
z, which is real, stands for the scaled fields. The behaviour of the scaling functions in 
the two limits of the scaled field, z + 0 and z + 00, may be inferred from the behaviour 
of the remnant functions obtained by Fisher and Barber (1972). It has recently been 
shown that modified remnant functions, R&(z)  (Fisher and Barber 1972), arise in the 
explicit calculation of the scaling function of the one-dimensional dimerised spin-4 
X Y  model upon which arbitrary boundary conditions are imposed (Spronken and 
Kemp 1986). In fact, the relevant quantity involved in this calculation is 

‘z,T( z ,  = $< z, T ( + i: ( 1 (1) 
where T = 0, U = 4, Os a c 5 and z, which is real, stands for the scaled dimerisation 
parameter. To obtain the behaviour of the scaling function in the two limits, z + 0 and 
z + CO, of the scaled field requires the analysis of P:,,(z) defined by (1). However, 
neither the modified remnant functions nor the sums of such functions have been 
analysed previously. It is the purpose of this letter to provide such an analysis of the 
function P&(z) ,  defined by ( l ) ,  in the simplest case, T = 0. The quantity U is restricted 
to half-odd integers and 0 s  a < 1. The quantity z is assumed complex. The calculation 
is similar to the one performed by Fisher and Barber (1972). Many of the mathematical 
identities and definitions used here can be found in the table of Gradshteyn and Ryzhik 
(1980). These two references will be referred to here as FB and GR. 

In the first part of this letter, an integral representation of PPI,,(z) is obtained. 
The use of the Mellin transform, the Hurwitz formula and the recursion relation for 
the function P, yield an explicit expression for P : + l 1 2 , 0 ( ~ )  for n = 0, 1,2, . . . , Os a < 1, 
and larg zl< v. An asymptotic expansion for IzI +CO is also obtained. A power 
expansion for P:+1/2,0(z) is given in the second part. 
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The modified remnant functions involved in (1) are defined by FB (recalling that 
here, U =  n + i  with n =0, 1, 2, .  . .): 

where 

An empty sum in (3) is interpreted as zero. The recursion relations for the modified 
remnant functions are identical to those for the ordinary remnant functions ( FB). These 
yield the following recursion relations for Pztl12,0( z): 

Accordingly, one needs only to consider the function P;;2,0( z), the recursion relation 
(4) allowing the determination of Pz+l12,0(z) for all n > O .  From (l) ,  (2) and (3), one 
obtains 

where the auxiliary function h ( y ,  z )  is defined by 

h ( y ,  2)  = -2[(y2+z)-1'2-y-']. (6) 

The integral representation for the function Pf;,,,(z) is obtained using the Mellin 
transform (Magnus et al 1966). The Mellin transform, M (  p ,  z ) ,  of the function h ( y ,  z) 
is (FB) 

where T(s) is the gamma function (GR). The inverse Mellin transform is 
, t c + i a  

from which one obtains, using (5 )  and (6), the following representation for P712,0(z): 
c+im 

P;;2,o(z) = - 4 r i  5 d p M ( p , z ) [ 5 ( p , l - a ) + 5 ( p , l + a ) I  (9) 

where L(s, a )  is the Riemann generalised zeta function (GR).  In (9), the strip 1 < c = 
Re( p )  < 3 is chosen such that the defining integral (7) converges as y + 03 and y + 0 
and that the pole at Re( p )  = 1 of the generalised zeta function is excluded. This ensures 
that (9) correctly represents the absolutely convergent sum (5 )  (FB) .  In order to use 
the Hurwitz formula for the function c(s, a), we shall first modify the integral rep- 
resentation (9). 
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From the definition of the generalised zeta function (GR) one has l ( p ,  1 + a )  = 
l ( p ,  a )  - C P ( a  # 0). Using this, (9) reads, after a change of variable, 

r c ' i - i e  

-2- J dpM(p ,  z)a-P 
4a i  c-im 

where c' = ;( 1 - c)(  - 1 < c' < 0). The last term on the RHS of (10) is - $h( a, z )  (cf (8)) 
while the first term is evaluated using the fact that the function M ( s ,  z )  decreases 
exponentially to zero as IIm(s)l+ co when larg zI < a (BF). Let C be a closed rectangular 
contour whose sides parallel to the imaginary axis extend from - i a  to ico. These sides 
intercept the real axis at c' and c" respectively. Applying the residue theorem, one 
obtains 

P ~ , ~ , ~ ( Z )  = { ( Y ~ + Z } - ~ / ~ - ( Y - ' + C  res 

+I J dp M (  1 - 2p, z ) [  l( 1 - 2p, 1 - a )  + l( 1 - 2p, a ) ] .  (11) 2ni c,,-ie 

Choosing c"> 4 enables us to use the Hurwitz formula for the generalised zeta function 
(GR). For clarity, let us quote this formula: 

e 

~ ( s ,  ~ ) = 2 ( 2 ~ ) ~ - - ' r ( i - s )  mS-- ' s in(2nma+~ns)  (12) 
m = l  

where Re(s) < 0 and O <  a s 1. Using (12), one obtains 

l(1-2P, l - a )+C(1-2P ,a )  
m 

= 4(2a)-2pr(2p)  COS(^^) C m-2p  cos( 2 r a m ) .  
m = l  

In addition one has, from the Legendre duplication formula for r (2p)  and from the 
relation r($+p)r(;-p) cos(pn) = 7~ (GR) ,  

r(2p)r(;-p)  COS(^^) = ~ % 2 * ~ - ~ r ( p ) .  (14) 

Regrouping (7), (13) and (14), it is easily shown that (11) reduces to 

P~,,,,(z) = {a'+ z} - ' l2  - a-' +E res -7 C cos (2nam) 
c"+im 1 "  

dp T2(2p)(a2m2z)-9 
a 1  m=1 c"-im 

(15) 
The contribution from the residues is now obtained. The integrand of the first term 
on the RHS of (10) is, using (7), 

(2aiV%)-1~-P~(t-~)r(p)[~(i -2p, i - a ) + l ( i  -2p, a ) ]  (16) 
which has a simple pole at p =; with a vanishing residue (i.e. l ( 0 ,  a )  = ; - a ;  ErdClyi 
(1953a)) and a double pole at p = 0 as can be seen from (GR and FB) 

(17a) lim l( 1 - 2p, a )  = -(2p)-' - + ( a )  

lim r(p) = p - ' +  +( 1) 

P+O 

( 1 7 ~  
P + O  
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where $ ( a )  is the digamma or psi function and -$( 1)  = CE which is the Euler constant 
(GR).  Using (17), the residue of (16) at p = O  is 

(18) 

The integral in the last term of the RHS of (15 )  is proportional to the inverse Mellin 
transform of r 2 ( p ) .  In fact, one has (ErdClyi 1953b) 

res = ln(z) - $ ( a )  - $(l  - a )  - 2  In 2 z # 0. 

dp r2( p ) (  7r2m2z)-p = K0(2.rrm&) Z # O  (19) 

where K,(  s)  is the modified Bessel function of the third kind (GR). Using the relation 
+ ( a ) + l / a  = $ ( l + a )  (GR) and combining (15) ,  (18) and (19), one obtains the final 
result 

P H I ~ , ~ ( Z )  = {a2+z}-1 /2+~n(z) -2  In 2 -  $(I  - a ) - + ( l  + a )  
a: 

- 4  C c o s ( 2 7 r a m ) ~ , ( 2 ~ m J ) .  
m = l  

When a = 0, PB/2,0(z) reduces to the ordinary remnant function R$2,0(~)  = R 1 , 2 , 0 ( ~ )  
(cf ( 1 )  and FB). Therefore, the restriction a # 0 introduced in order to use the Hurwitz 
formula may be relaxed and equation (20) is thus valid for Os a < 1, z # 0 and 
larg zI < 7r. The recursion relation (4), with P7/2,0(z) given by (20), allows us to obtain 
P~+ l12 ,0 (~ )  for n > 0. This yields 

-4(-7r)-"Z"/2 f m-" cos(2.rram)Kfl(27rm&) 
m = l  

where the function B2,(a)  is the Bernoulli polynomial (GR). The restriction n > 0 can 
be dropped provided an empty sum in (21) is interpreted as zero (i.e. ZIEa (. . .) = 0). 
Therefore (21) holds for all n 3 0. It is valid for O S  a < 1 ,  z # 0 and larg zI < T. 

Using the relation (GR) 

B,,(o) = -2(-27r)-2T(21+ 1)5(21) l > O  (22) 
where ((21) is the Riemann zeta function, one can easily show that the equation (21) 
reduces, in the case a = 0, to the expression previously obtained by Fisher and Barber 
(1972) for the ordinary remnant functions. Another interesting case is a =+. From 
(2) one has 

U{;+ Z)n-1'2Bn+t (23) n+1/2,O(Z) = R21/2,o(Z) +- 
R-'/2 2J;; 

r ( n + f )  
and thus (cf (1)) 
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which yields, using (21) and the fact that +(f) = -CE-2 In 2 and +(#) = + ( f ) + 2  (GR), 

Z n  

T ( n + l )  
R1/2 n+1/2,0(~) =- [ln(z) + C E + 2  In 2 -  +( n + l ) ]  

Using the relation (22) and the relation between B2,(;)  and 5(21) (ErdClyi 1953a), one 
obtains 

B2&) = - (1  -21-2')B21(o). (26) 

Combining (26), (25) and (21) (with a =0)  yields 

a result that can be derived directly from (2) (FB).  

Since K,(s )  = (v/2s) 'I2 e-'[1 +O(s-')] as 1st -,a and larg S I  < 3 v / 2  (GR), one con- 
cludes that the RHS of equations (21) and (25) decrease to zero exponentially fast as 
IzI+a.  No dependence upon a survives in this limit and the behaviour of P:+1/2,0(z), 
R!,!,?1/2,0(z), as well as the behaviour of the ordinary remnant function Rn+l12,0(z) (FB),  

become asymptotically identical. These fuunctions are O ( z n  In z). 
We conclude this letter with the derivation of a convergent power expansion of 

P:+l,2,0(z) for arbitrary z (except possibly, as for the ordinary remnant functions, at 
branch points of (2) (FB) ) .  Let us introduce the integer k, defined by 

k, = [ ~ a  + (28) 

where p = *1 and where [ a ]  stands for the largest integer less than or equal to the 
real number a. Removing the first k, terms in (2) and expanding the remainder, one 
obtains, for the function P:+l12,0( z) defined by ( 1 )  ( n  L 0), 

Note that x.k.@ (. . .) = 0 in (29). As z+O, equation (29) yields 
Z n + l  

C+1/2,O(Z) = 2(n + l ) !  [5(3 ,1+a)+5(3 ,1-a) l ( l+O(z) )  (30) 

which shows explicitly the dependence of P:+l12,0(z) on a in this limit. Again, when 
a = 0, the expansion (29) coincides with the expansion of the ordinary remnant function 
previously obtained by Fisher and Barber (1972). 

Note finally that (21), with nZ0, constitutes, to our knowledge, a new series 
involving modified Bessel functions of the third kind and Bernoulli polynomials. For 
the special case n = 0, it reduces to the analytical continuation of a known series of 
Bessel functions (see, for instance, GR, equation (8.526.1)). 
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